随着照明行业的不断创新和迅速发展,加之节能和环保日益重要,高亮度(HB)LED已从简单的指示灯演变为超越传
统光源的重要照明源。相比其他照明解决方案,HB LED具有数项显著的优势,例如能耗低、寿命长和照明质量高。不过,HB LED要想成功取代普通白炽灯进入大批量市场,其驱动电子装置的成本必须降至最低。
对传统照明源白炽灯而言,驱动是轻而易举的事情,只要让灯泡直接与电压源连接就行了。大多数能源都是以恒定
电压的形式存在的,这使得白炽灯的驱动成本相当低。然而,LED有一个光输出强度,这与它的电流及正向压降成正
比,并随温度而变化。
因此,LED需要一个恒定电流来驱动,并需要额外的电路。传统上,LED的离线恒定电流驱动器一般是采用带输出
电流调节电路 (见图1) 的隔离反激式转换器来实现的。通过一个检测电阻测量实际的LED电压,然后与参考电压数值
进行比较,得出误差电压。该误差电压经由光耦合器被传送到初级端,用于控制初级端开关器件的占空比。尽管这种
方案能够实现出色的LED电流调节,但输出调节电路需要光耦合器、参考电压和检测电阻,大大增加了系统成本,降
低了总体效率。
初级端调节(primary
side regulation,PSR)技术可能是将离线LED驱动器的成本降至最低的最佳解决方案。这项技术
只需驱动器初级端的信息,就可精确控制次级端的LED电流,不仅消除了输出电流检测损耗,同时省去所有次级反馈
电路,从而在不产生庞大成本的前提下提高离线LED驱动器设计的效率。此外,该技术无须次级端反馈电路,即可调
节LED驱动器输出电压,这相当于提供了一种开灯过压保护功能,进一步确保了驱动器的可靠性。本文将论述初级端
调节技术的基本工作原理,并介绍一种高集成度的初级端调节PWM控制器。与传统的次级端调节方法相比,这种控
制器拥有多种显著的优势。
初级端调节的基本概念
图2为初级端调节反激式转换器的基本电路示意图及其典型波形。一般而言,断续传导模式(discontinuous conduction mode,DCM)输出调节性能较好,因此是初级端调节的首选工作模式。初级端调节的关键在于如何在无直
接检测的前提下获得输出电压和电流的信息。一旦获得这些数值,通过传统的PI控制方法就可以轻易进行控制了。
在MOSFET导通时间(TON)内,初级端电感(Lm)加载输入电压(VIN)。于是,MOSFET电流(Ids)从0线性增加到峰值( Ipk)。在这段时间内,能量从输入端转移存储在电感中。当MOSFET关断时,存储在电感中的能量促使整流二极管(D) 导通。在二极管导通时间(TD)内,输出电压(Vo)加载在次级端电感上(Lm×Ns2/Np2),二极管电流(ID)从峰值(Ipk× Np/Ns)线性下降至0。在TD结束时,所有存储在电感中的能量都释放到输出端。在此期间,输出电压和二极管正向压
降之和反映到辅助绕组端,表示为(Vo+VF)×Na/Ns。由于二极管正向压降随电流减小而减小,在二极管导通时间结
束时,二极管电流减小为0,故这时辅助绕组电压能最好地反映出输出电压。因此,通过在二极管导通时间结束时对
绕组电压进行简单采样,就可以得到输出电压的信息,而二极管导通时间则可通过监控辅助绕组电压而获得。
同时,输出电流的估算需要一些乘法计算。假设输出电流与二极管稳态时的平均电流相等,输出电流可通过下式估
算:Io=Ipk×(Np/Ns)×(TD/2Ts)。输出电流估算器通过一个峰值检测电路来获取漏极电流峰值,并利用二极管导通时间(TD)计算出输出电流。
集成式初级端调节控制器
初级端调节PWM控制器,如飞兆半导体公司的FAN102,是一种专门处理初级端调节离线LED驱动器设计的技术。
这种技术可显著简化满足更严苛效率要求的设计难题,并省去增加成本和可靠性问题的外部组件,如光耦合器和KA4 31。图3为FAN102的内部模块示意图。该器件具有一个用于误差放大器的容差为±1%的内部参考电压,可以根据外部
组件的容差将输入电流/电压变化减至最小,另外还带有一个集成式外部组件温度变化补偿电路,无论温度如何变化
,均可获得高精度。其内部振荡器具有跳频功能以减小EMI,可在输入端使用小型线路滤波器。
结论
结合了采样和输出估算的专有技术可为各种离线LED驱动器提供调节精确、成本更低的实现方案—从街灯到医疗应
用,乃至橱柜灯和台灯这类消费电子应用都可实现。现在,这些LED驱动器能够实现更小的尺寸、更低的成本和更高
的效率。